═════❥❥ 👉 ■ #TutorialHub #LearnOnline #TutorialVideos #HowTo #OnlineLearning #TechTutorials #Education #DIY #TutorialGuide #SkillBuilding #TechTips #LearningMadeEasy #KnowledgeSharing #SkillDevelopment #StepByStep #LearningJourney #HowToDoIt #OnlineCourses #EdTech #TutorialTips #LearnAnywhere #DIYProjects #TutorialsForBeginners #MasterSkills #TechKnowHow #TutorialTime #EasyLearning #LearnNow #StepByStepGuide #LearnWithUs #TutorialExperts #SkillsOnline #EducationHub #SelfLearning #E-Learning #TutorialLife #LearnToDo #KnowledgeHub #HowToGuide #TutorialCommunity #LearnAndGrow #DIYHowTo #TeachingHub #OnlineSkills #InteractiveLearning #StepByStepLearning #TechEducation #DIYTips #HandsOnLearning #KnowledgeBoost https://newtutorialshub.blogspot.com ...

Tutorial Hub: Tech Tricks Video | Blogger Tutorial | Adsense Tutorial | Digital Marketing #techvblog: Number System Conversion

Friday, December 20, 2024

Number System Conversion


 TITLEWITHHASHTAGS

-:: ABOUT THIS VIDEO TUTORIAL ::-

Number System Conversion

Converting between number systems involves using systematic methods. Below are the detailed steps for converting between Decimal, Binary, Octal, and Hexadecimal systems.


1. Decimal to Other Systems

Decimal to Binary:

  1. Divide the decimal number by 2.
  2. Record the remainder (0 or 1).
  3. Repeat the division until the quotient is 0.
  4. Write the remainders in reverse order.

Example: Convert 251025_{10} to Binary.

  • 25÷2=1225 \div 2 = 12 R 11
  • 12÷2=612 \div 2 = 6 R 00
  • 6÷2=36 \div 2 = 3 R 00
  • 3÷2=13 \div 2 = 1 R 11
  • 1÷2=01 \div 2 = 0 R 11
    Result: 11001211001_2.

Decimal to Octal:

  1. Divide the decimal number by 8.
  2. Record the remainder.
  3. Repeat until the quotient is 0.
  4. Write the remainders in reverse order.

Example: Convert 451045_{10} to Octal.

  • 45÷8=545 \div 8 = 5 R 55
  • 5÷8=05 \div 8 = 0 R 55
    Result: 55855_8.

Decimal to Hexadecimal:

  1. Divide the decimal number by 16.
  2. Record the remainder (0-9 or A-F).
  3. Repeat until the quotient is 0.
  4. Write the remainders in reverse order.

Example: Convert 17510175_{10} to Hexadecimal.

  • 175÷16=10175 \div 16 = 10 R 15(F)15 (F)
  • 10÷16=010 \div 16 = 0 R 10(A)10 (A)
    Result: AF16AF_{16}.

2. Binary to Other Systems

Binary to Decimal:

  1. Multiply each binary digit by 2position2^{\text{position}} (from right to left, starting at 0).
  2. Sum all the values.

Example: Convert 11001211001_2 to Decimal.

  • (1×24)+(1×23)+(0×22)+(0×21)+(1×20)=2510(1 \times 2^4) + (1 \times 2^3) + (0 \times 2^2) + (0 \times 2^1) + (1 \times 2^0) = 25_{10}.

Binary to Octal:

  1. Group binary digits in sets of 3, starting from the right.
  2. Convert each group to its octal equivalent.

Example: Convert 11001211001_2 to Octal.

  • Group: 011001011 \, 001.
  • Convert: 0112=38011_2 = 3_8, 0012=18001_2 = 1_8.
    Result: 31831_8.

Binary to Hexadecimal:

  1. Group binary digits in sets of 4, starting from the right.
  2. Convert each group to its hexadecimal equivalent.

Example: Convert 11001211001_2 to Hexadecimal.

  • Group: 000110010001 \, 1001.
  • Convert: 00012=1160001_2 = 1_{16}, 10012=9161001_2 = 9_{16}.
    Result: 191619_{16}.

3. Octal to Other Systems

Octal to Decimal:

  1. Multiply each digit by 8position8^{\text{position}} (from right to left, starting at 0).
  2. Sum all the values.

Example: Convert 57857_8 to Decimal.

  • (5×81)+(7×80)=40+7=4710(5 \times 8^1) + (7 \times 8^0) = 40 + 7 = 47_{10}.

Octal to Binary:

  1. Convert each octal digit to its 3-bit binary equivalent.

Example: Convert 57857_8 to Binary.

  • 58=10125_8 = 101_2, 78=11127_8 = 111_2.
    Result: 1011112101111_2.

Octal to Hexadecimal (via Binary):

  1. Convert the octal number to binary.
  2. Group the binary digits in sets of 4.
  3. Convert each group to hexadecimal.

Example: Convert 57857_8 to Hexadecimal.

  • 578=101111257_8 = 101111_2.
  • Group: 000101110001 \, 0111.
  • Convert: 00012=1160001_2 = 1_{16}, 01112=7160111_2 = 7_{16}.
    Result: 171617_{16}.

4. Hexadecimal to Other Systems

Hexadecimal to Decimal:

  1. Multiply each digit by 16position16^{\text{position}} (from right to left, starting at 0).
  2. Sum all the values.

Example: Convert 1A161A_{16} to Decimal.

  • (1×161)+(10×160)=16+10=2610(1 \times 16^1) + (10 \times 16^0) = 16 + 10 = 26_{10}.

Hexadecimal to Binary:

  1. Convert each hexadecimal digit to its 4-bit binary equivalent.

Example: Convert 1A161A_{16} to Binary.

  • 116=000121_{16} = 0001_2, A16=10102A_{16} = 1010_2.
    Result: 00011010200011010_2.

Hexadecimal to Octal (via Binary):

  1. Convert the hexadecimal number to binary.
  2. Group the binary digits in sets of 3.
  3. Convert each group to octal.

Example: Convert 1A161A_{16} to Octal.

  • 1A16=0001101021A_{16} = 00011010_2.
  • Group: 000110100000 \, 110 \, 100.
  • Convert: 0002=08000_2 = 0_8, 1102=68110_2 = 6_8, 1002=48100_2 = 4_8.
    Result: 0648064_8.

Would you like to practice any specific conversion or need a detailed explanation of a particular step?

-:: RELATED HASHTAGS/KEYWORDS THIS VIDEO TUTORIAL ::-

number system conversion,number system,number conversion,decimal number system conversion,number system in computer,binary to decimal conversion,#number system conversion,conversion of number system,#conversion number system,number systems,octal number system,binary to decimal number conversion,conversion to decimal number system,decimal number system,number system in hindi,number system conversion techniques,number system conversion shortcut tricks

sITEmAP: Tutorial Hub: Tech Tricks Video | Blogger Tutorial | Adsense Tutorial | Digital Marketing #techvblog